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Universiẗat Ulm, Abteilung Theoretische Informatik

James-Franck-Ring, D-89069 Ulm, Germany
e-mail: schoenin@informatik.uni-ulm.de

Abstract

We present a simple probabilistic algorithm for solvingk-
SAT, and more generally, for solving constraint satisfac-
tion problems (CSP). The algorithm follows a simple local-
search paradigm (cf. [9]): randomly guess an initial as-
signment and then, guided by those clauses (constraints)
that are not satisfied, by successively choosing a random
literal from such a clause and flipping the corresponding
bit, try to find a satisfying assignment. If no satisfying as-
signment is found afterO(n) steps, start over again. Our
analysis shows that for any satisfiablek-CNF formula with
n variables this process has to be repeated onlyt times,
on the average, to find a satisfying assignment, wheret is
within a polynomial factor of(2(1 � 1=k))n. This is the
fastest (and also the simplest) algorithm for3-SAT known
up to date.

We consider also the more general case of a CSP with
n variables, each variable taking at mostd values, and
constraints of orderl, and analyze the complexity of
the corresponding (generalized) algorithm. It turns out
that any CSP can be solved with complexity at most
(d � (1� 1=l) + ")n.

1. Algorithms for k-SAT

Several algorithms have been designed fork-SAT, and
some in particular for the special case 3-SAT which beat
the naive2n bound that is obtained by trying all potential
2n many assignments for then variables in the input for-
mula.

The following list summarizes the known results fork-SAT
and adds our new one, indicated by [*]. A constantc in the
list means that there is an algorithm of the given type (de-
terministic or probabilistic) with complexity within a poly-
nomial factor ofcn.

3-SAT 4-SAT 5-SAT 6-SAT type ref.
1:849 - - - det. [15]
1:782 1.835 1.867 1.888 det. [13]
1:618 1.839 1.928 1.966 det. [10]
1:588 1.682 1.742 1.782 prob. [13]
1:579 - - - det. [17]
1:505 - - - det. [8]
1:5 1.6 1.667 1.715 prob. [20]
1:497 - - - det. [19]
1:476 - - - det. [16]
1:447 1.496 1.569 1.637 prob. [14]
1:362 1.476 - - prob. [14]
1:334 1.5 1.6 1.667 prob. [*]

2. The Algorithm

In the following we describe and analyze our algorithm.
First consider the following probabilistic procedure:

input: a formula ink-CNF withn variables

Guess an initial assignmenta 2 f0; 1gn,
uniformly at random

Repeat3n times:
If the formula is satisfied by the actual
assignment: stop and accept
LetC be some clause not being satisfied by
the actual assignment
Pick one of the� k literals in the clause
at random and flip its value
in the current assignment

Suppose we have a satisfiable formula and fix some satis-
fying assignmenta�. We want to estimate the probability
that the algorithm findsa� (or some other satisfying assign-
ment.) Once we have found this “success probability”p, it
is clear that the expected number of independent repetitions
of the procedure until we find a satisfying assignment is1

p .
The probability that we don’t get a satisfying assignment
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after t repetitions is at most(1 � p)t � e�pt. Therefore,
to achieve an acceptable error probability of, saye�20, one
needs to chooset = 20

p . In any case, the complexity of the

algorithm is within a polynomial factor of1p .

Now we calculatep. It is clear that the random variableX
that counts the number of bits in which the random assign-
menta and the fixed assignmenta� disagree (i.e. the Ham-
ming distance betweena anda�) is binomially distributed
(with parametersn and 1

2 .) That is,Pr(X = j) =
�
n
j

�
2�n

for j = 0; 1; : : : ; n. Under the condition thatX = j, the
number of bits that have to be flipped to get froma to a�

is j (provided those bits are correctly selected.) We can
imagine the process as a Markov chain. There is an initial
statestart, and there are the states0; 1; : : : ; n which indi-
cate the Hamming distance betweena anda�. The transfer
from start to one of the state0; 1; : : : ; n corresponds to the
random selection of the initial assignmenta. The transfer
probability fromstart to statej is

�
n
j

�
2�n. If the system

is in state0, this means, a satisfying assigment has been
found, and the process stops. (Notice that the algorithm
might even findanothersatisfying assignment in a state
different from0, if the formula has more than one satis-
fying assignment, but this situation can only increase the
actual acceptance probability.)

If C is a clause that is not satisfied by the assignmenta,
then there must be at least one literal (out ofk) in that
clause whose value needs to be flipped so that the Ham-
ming distance betweena� anda decreases by 1. Selecting
a literal from such ak-CNF clause at random means that
the current statej transfers to statej�1 with probability at
least1k , and transfers to statej+1 with probability at most
k�1
k .

This Markov chain approach is very similar to the random-
ized algorithm by Papadimitriou [12] for 2-SAT. The differ-
ence here is that we do not allow the random walk to run for
very long, just up to3n steps, say, since the process tends
to move into states that correspond to a large Hamming dis-
tance. The idea in our algorithm is that with (exponentially
small, but) non-neglectible probability it can happen that
the start state transfers to a state, sayn=4, which is rela-
tively close to the final state 0, and the probability to reach
the final state is in this case at least( 1k )

n=4 (but actually
somewhat higher because the process runs for more than
n=4 steps.)

Given that the process has initially transfered into statej
we calculate the probabilityqj that the process reaches the
absorbing state 0. For this to happen the process needs at
leastj steps. We consider the case that the random walk
takesi � j steps in the “wrong” direction, theni+ j steps
are required toward the “right” direction so that the process
stops in state 0 afterj + 2i steps. To calculate this prob-

ability requires to calculate the number of paths on a rect-
angular grid (which represents the possible movements on
the Markov chain over the time scale) which transfers the
process from statej to state0 while using exactlyi steps in
the “wrong” direction. Using the ballot theorem from [5],
page 73, it can be seen that this number is

�
j+2i
i

� � j
j+2i .

Therefore, the probability can be estimated as follows.

qj �
jX

i=0

�
j+2i
i

� � j
j+2i � (k�1k )i � ( 1k )i+j

� 1
3 �

jX
i=0

�
j+2i
i

� � (k�1k )i � ( 1k )i+j

Further we can lower bound the above sum by its largest
term as follows. We use the following fact (cf. [1])

�
n
�n

� � 2h(�)n = ( 1� )
�n( 1

1�� )
(1��)n

whereh(�) = �� log2 ��(1��) log2(1��) is the binary
entropy function. In particular, the two functions

�
(1+2�)j

�j

�
and [( 1+2�� )� � ( 1+2�1+� )1+�]j

are within polynomial factors of each other. We lower
bound the above estimation forqj by setting� = 1

k�2 ,

qj � 1
3 �

jX
i=0

�
j+2i
i

� � (k�1k )i � ( 1k )i+j

� [( 1+2�� )� � ( 1+2�1+� )1+� � (k�1k )� � ( 1k )1+�]j

(where� = 1
k�2 )

= ( 1
k�1 )

j

where the last inequality holds up to some polynomial fac-
tor. Therefore, up to some polynomial factor, using the
binomial theorem, we obtain the following estimate for the
success probabilityp:

p � ( 12 )
n

nX
j=0

�
n
j

�
( 1
k�1 )

j = ( 12 (1 +
1

k�1 ))
n

Therefore the complexity ofk-SAT is within a polynomial
factor of(2(1� 1

k ))
n.

Notice that we needed to consider random walks up to
lengthj + 2i � n+ 2n = 3n.

3. Constraint Satisfaction Problems

Notice that we did not use the fact that the clauses are dis-
junctions of theirk literals, they could just as well be any
Boolean formulas ink (out of then) variables. The im-
portant point was just that by flipping the right literal value
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the Hamming distance to the target assignment decreases
by 1. This shows that the algorithm can be easily adapted
to solve general constraint satisfaction problems.

A (discrete)constraint satisfaction problemconsists of the
following components:

� A set of n variablesx1; : : : ; xn. The variables take
values from some finitedomainD whered = jDj.
An assignmentis a tuple ofn values fromD assigned
to the variables.

� A set of constraintsC1; : : : ; Cm. A constraint is a
0-1-valued function on the domainDn. For compu-
tational purposes a constraint can berepresentedas a
formula, a circuit, a finite table, or an algorithm. If
Cj(a1; : : : ; an) = 1 we say that constraintCj is sat-
isfiedby the assignment(a1; : : : ; an) 2 Dn. If a con-
straintCj depends only onl arguments, then it is of
order l.

The algorithmic task is, given a CSP (its representation),
find an assignment that satisfies all constraints (if one ex-
ists.)

There is considerable interest in algorithms for constraint
satisfaction problems since constraint satisfaction prob-
lems occur extremly common (see [7], [4], [2] Chapter
36.) Many NP-complete problems are (or can be formu-
lated as) CSP’s. Two popular examples arek-SAT andk-
colorability (given a graph, find a coloring of the nodes
with k colors such that no adjacent nodes get the same
color.) In the case ofk-SAT we haveD = f0; 1g, i.e.
d = 2, and the constraints are of orderl = k and are rep-
resented by CNF clauses consisting of at mostk variables.
In the case ofk-colorability we have thatn is the number
of nodes in the graph,jDj = d = k, and each edge in the
graph gives rise to a constraintC of order 2 where the con-
straint is satisfied iff the colors assigned to the two nodes
of the edge are different.

Sincek-SAT andk-colorability are NP-complete problems
provided thatk � 3 [6], these examples show that the CSP
is NP-hard if either(d � 3; l � 2) or (d � 2; l � 3).
The case(d = 2; l = 2) is solvable in polynomial time.
This case corresponds to (or can be formulated as) a 2-SAT
problem and it is known that 2-SAT is in P.

The naive algorithm for a CSP with parametersn (num-
ber of variables),d (size of the domain), andl (the or-
der of the constraints) is polynomially related todn since
one can cycle through all potential assignments fromDn

and check for each assignment whether it satisfies all con-
straints. Even a small improvement in the base value of this
exponential function has a significant effect with respect to
the size of CSP problems that can be solved within a given

time. For example, if the base valued could be lowered
to
p
d then we could solve CSP’s of about double the size

within the same time.

Again, the algorithmic approach, shown fork-SAT can be
carried out. Observe that for a CSP with parametersn; d; l
as above, if some constraint of orderl is not satisfied by the
actual assignment fromDn, then there arel�(d�1) ways of
changing the value of one of the variables involved in that
constraint. That is, the role of “k” in the above discussion
on k-SAT is replaced by “l � (d � 1)”. (Furthermore, the
role of “2n” is replaced by “dn”.)

Following the scheme from above, the corresponding “suc-
cess probability” can be estimated, up to some polynomial
factor, to be at least

p �
nX

j=0

�
n
j

�
( 1d)

n�j(d�1d )j( 1
k�1 )

j

= d�n
nX

j=0

�
n
j

�
( d�1k�1 )

j

= d�n(1 + d�1
k�1 )

n (wherek = l � (d� 1) )

Indeed, for CSP’s withd > 2 a further improvement is
possible. Observe that it can happen that statej transfers
to the same statej again in the next step. This means that
the (wrong) value of a variable within a constraint that is
not satisfied by the actual assignment is changed to another
wrong value, thus the Hamming distance to the fixed sat-
isfying assignment does not change. In the worst case, the
probability that this happens isd�2l(d�1) . That is, the statej
can transfer in any of the statesj � 1; j; j + 1 with prob-
abilities 1

l(d�1) ;
d�2

l(d�1) ;
l�1
l , respectively (where this is the

worst-case situation.)

We analyze this modified Markov chain by reducing it to
the above situation where the only transfers from statei are
to statei� 1 andi+ 1. We map all transitions of the form
i ! i ! � � � ! i ! i � 1 (andi ! i ! � � � ! i !
i + 1) in the new model to a one-step transitioni ! i� 1
(i ! i + 1, respectively) in the old model. A sequence of
transitions of the formi ! i ! � � � ! i ! i � 1 occurs
with probability

1
l(d�1) �

X
k�0

( d�2
l(d�1))

k = 1
l(d�1) � 1

1� d�2
l(d�1)

= 1
(l�1)(d�1)+1

Therefore, we can use the valuek = (l�1)(d�1)+1 und
plug it in the formula for the success probability calculated
above:

p � d�n
�
1 +

d� 1

k � 1

�n
= d�n

�
1 +

1

l � 1

�n
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The reciprocal value of this probability yields the complex-
ity bound(d(1 � 1=l))n. In the above calculation we have
mapped arbitrarily long random walks in the new model to
a single step in the old model. Actually, we can do this
only for a bounded numberc of steps which means that the
number of steps the new Markov chain needs to be run is
3cn instead of3n. By choosingc large enough, one can get
arbitrarily close to the value calculated above. Therefore,
we can take this into account by adding a “+"” to the base
of the exponential function.

Theorem: For d = 2 there is an algorithm for the CSP
with complexity polynomially related to

�
2(1� 1

l
)
�n

Ford > 2 and any" > 0 there is an algorithm for the CSP
with complexity at most

�
d(1� 1

l
) + "

�n

In the special case ofl = 2 our bound(d2 + ")n is beaten
by Beigel and Eppstein’s probabilistic approach [3] which
essentially proceeds as follows: for each variablexi ran-
domly guess a 2-element subsetDi � D. Then, solve the
restricted CSP that choosesxi only from the domainDi.
This restricted CSP can be formulated as a 2-SAT prob-
lem and therefore can be solved in polynomial time. Given
that the CSP has a solution, with probability2d the random
guess for variablexi is OK in the sense thatDi contains
the correct value for variablexi. Therefore, the complexity
of this probabilistic algorithm is within a polynomial factor
of (d2 )

n.

The following table shows some numerical values for the
CSP.

l = 2 l = 3 l = 4 l = 5 l = 6
d = 2 1 1:334 1:5 1:6 1:667
d = 3 1:5 2:001 2:251 2:401 2:501
d = 4 2 2:667 3:001 3:201 3:334
d = 5 2:5 3:334 3:751 4:001 4:167
d = 6 3 4:001 4:501 4:801 5:001

It was mentioned that thek-colorability problem is a spe-
cial case of the CSP withl = 2. The best known algorithms
for k-colorability are indeed somewhat better than our gen-
eral CSP bounds, see [18] and [3].

4. Summary

We have presented a general algorithm to solve a CSP
which improves upon the naive exponential-time algorithm

considerably, and will therefore have some practical rele-
vance. In the special case of3-SAT the achieved complex-
ity bound is the best known to date. The algorithm is an-
other example with respect to Pudlak’s proposal [15] to find
algorithms for (k-)SAT which are not instantiations of the
Davis-Putnam procedure, or more general, which are not
algorithmic versions of previously known logical calculi.

Indeed, the algorithm is an example for a new paradigm
in random algorithm design. Although the Markov chain
approach is well known (cf. [11]) in random algorithm de-
sign, usually it is the stationary distribution and the rapid
mixing property that is of interest. In our algorithm we do
not intend to reach the stationary distribution, but rather it
is intended that the algorithm reaches a relatively unlikely
state rather quickly (if at all) which constitutes the solu-
tion of the problem. If the Markov chain does not reach
this state whithin the first few steps, we start the process all
over again.
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